Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We present the demography of the dynamics and gas mass fraction of 33 extremely metal-poor galaxies (EMPGs) with metallicities of 0.015–0.195Z⊙and low stellar masses of 104–108M⊙in the local universe. We conduct deep optical integral field spectroscopy (IFS) for the low-mass EMPGs with the medium-high resolution (R= 7500) grism of the 8 m Subaru FOCAS IFU instrument by the EMPRESS 3D survey, and investigate the Hαemission of the EMPGs. Exploiting the resolution high enough for the low-mass galaxies, we derive gas dynamics with the Hαlines by the fitting of three-dimensional disk models. We obtain an average maximum rotation velocity (vrot) of 15 ± 3 km s−1and an average intrinsic velocity dispersion (σ0) of 27 ± 10 km s−1for 15 spatially resolved EMPGs out of 33 EMPGs, and find that all 15 EMPGs havevrot/σ0< 1 suggesting dispersion-dominated systems. There is a clear decreasing trend ofvrot/σ0with the decreasing stellar mass and metallicity. We derive the gas mass fraction (fgas) for all 33 EMPGs, and find no clear dependence on stellar mass and metallicity. Thesevrot/σ0andfgastrends should be compared with young high-zgalaxies observed by the forthcoming JWST IFS programs to understand the physical origins of the EMPGs in the local universe.more » « less
- 
            Abstract We present kinematics of six local extremely metal-poor galaxies (EMPGs) with low metallicities (0.016–0.098Z⊙) and low stellar masses (104.7–107.6M⊙). Taking deep medium/high-resolution (R∼ 7500) integral-field spectra with 8.2 m Subaru, we resolve the small inner velocity gradients and dispersions of the EMPGs with Hαemission. Carefully masking out substructures originating by inflow and/or outflow, we fit three-dimensional disk models to the observed Hαflux, velocity, and velocity dispersion maps. All the EMPGs show rotational velocities (vrot) of 5–23 km s−1smaller than the velocity dispersions (σ0) of 17–31 km s−1, indicating dispersion-dominated (vrot/σ0= 0.29–0.80 < 1) systems affected by inflow and/or outflow. Except for two EMPGs with large uncertainties, we find that the EMPGs have very large gas-mass fractions offgas≃ 0.9–1.0. Comparing our results with other Hαkinematics studies, we find thatvrot/σ0decreases andfgasincreases with decreasing metallicity, decreasing stellar mass, and increasing specific star formation rate. We also find that simulated high-z(z∼ 7) forming galaxies have gas fractions and dynamics similar to the observed EMPGs. Our EMPG observations and the simulations suggest that primordial galaxies are gas-rich dispersion-dominated systems, which would be identified by the forthcoming James Webb Space Telescope observations atz∼ 7.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
